
ACO Algorithm:
Initialize the pheromone trails and parameters;

while(not_termination)
 for each ant complete a tour
 LocalPhermoneUpdate();
 End for
 Update_Best();
 GlobalPheromoneUpdate();
 end while

end procedure

Genetic Folding MATLAB Toolbox: Solving Santa
Fe Trail Problem

Mohammad A. Mezher, Maysam F. Abbod

Abstract— This paper is a primarily attempt to design a toolbox
for Genetic Folding algorithm using MATLAB. The toolbox was
designed for training ACO in solving Santa Fe Trail problem.
However, GF algorithm can encode and decode any type of
problem into a linearly folding scheme. For advance or even
simple type of problems, a string scheme is encoding to represent a
set of operators. GF is a novel algorithm in solving optimization
problems as shown in the experiments. We will also illustrate the
benefits of GF algorithm conducted into ACO in order finding the
best feeding function in comparison with the literature.

Keywords-Genetic Folding; Genetic Algorithm; Genetic
Programming; Ant Colony Optimization; Evolutionary
Algorithms; Santa Fe Trail Problem

I. INTRODUCTION
Genetic folding algorithm (GF) is an evolutionary

computation algorithm to find computer programs that can
perform a task [1]. Programs (chromosomes) generated by
GF are usually represented by floating numbers separated
by dots. Each cell in a chromosome holds floating numbers
represent a function call and a cell holds less than one is a
value to be plugged in functions.

GF has been shown to be an effective strategy in
problems of classifications, regressions and recently in ant
colony optimization problems. For example, classification
[2] and regression [3] have demonstrated how genetic
optimization methods can be used to derive superior results.
The [4] have presented GF using Ant Colony Optimization
to solve Santa Fe Trail problem, whilst others have
demonstrated how a combination of GF and GP
implemented in analogue circuit design [7].

Unlike older AI systems, GF is better than conventional
AI in that it is more genetic generation diversity [4] and
simple to implement as shown here. Furthermore, GF has
shown significant benefits over typical optimization
techniques in searching a large, multi-class, or n-dimensional
dataset.

Mohammad A. Mezher is with the College of Computing, Fahad Bin

Sultan University, Tabuk, KSA (e-mail: mmezher@fbsu.sa.edu)
Maysam F. Abbod is with the Electronic and Computer Engineering,

Brunel University London, Uxbridge, UK (e-mail:
maysam.abbod@brunel.ac.uk)

The structure of this paper, section II introduces the Santa
Fe Trail problem. In Section III we discuss the overview of
GF algorithm. We then explain and provide examples of
MATLAB code of our new GF schema. We then summarize
experiments results of the previous literature in Section IV.
Section V states the conclusion and future directions.

II. ANT COLONY OPTIMISATION
Ant Colony Optimization (ACO) is a technique for

optimization that was initially introduced in the early of
1990’s and it is one of the most successful techniques of the
field of swam intelligence. The general idea is relatively
simple and based on a set of ants, each making one of
possible round-paths looking for grain [8]. Figure 1 shows
the ACO algorithm pseudo code.

Artificial ant problem however, has been solved using
GA [11], GP [10] to different problems such as travelling
salesmen problem [9]. The general pseudo code of the ACO
algorithm has been shown in Figure 1.

Figure 1. An ACO Algorithm Pseudo-Code

III. GENETIC FOLDING ALGORITHM

Genetic Folding algorithm has been inspired by
RNA/DNA folding mechanism as in [2]. GF algorithm is a
proofed to be a comparable algorithm in predicting
mathematical equations such as kernel function [4] for either
classification [5,6] and regression [3] problems. GF
simulates the survival of the fittest individuals among all the
individuals in the population over successive generations for
solving a problem. Each generation consists of a population
of linear floating numbers that represents a program. GF

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 54

MAXGEN = 50; % No. of generations
Oplist =
{'antprogn3','antprogn2','antif','antmove','a
ntright','antleft'};% set of operators
Oparity ={3,2,2,0,0,0};% arity of each
operator
% Initialise population
Chrom = GFEncoding(Oplist, Oparity);
Chrom= GFOperator(‘GFDecoding’, Chrom);
%Create GF trees to evaluate it by GPLAB
GFPOP = fun(antEval(Chrom)); % Evaluate GF
Chromosomes
Gen = 0; % Counter
% Start GF generational loop
while Gen < MAXGEN
% Visualization using GPLab toolbox
plotgraphics
%Encode a GF chromosome using the defined set
Chrom = GFEncoding(Oplist, Oparity);
% Add chromosome into population
[GFPOP]=Combine (Chrom, GFSelected);
% use a sus selection method
GFSelected = selectMethod('sus',GFPOP);
% Refold individuals (GF Genetic Operator)
GFSelected = GFOperator('Refolding',
GFSelected);
% Create A GF Tree to be evaluated in GPLab
GFSelected = GFOperator(‘GFDecoding’,
GFSelected);
% Evaluate offspring using antEval function
GFSelected = fun(antEval(GFSelected));
% Add offspring into population
[GFPOP]=Combine (Chrom, GFSelected);
% Increment counter
Gen = Gen+1;
end

algorithm has a flexible representation of GF program;
Prefix, Suffix and Infix formats [2].

A simple MATLAB GF algorithm code is shown in
Figure 2. GF firstly operates on an initial population of
potential solutions producing the successively fittest
solution. At each generation, the solutions (chromosomes)
generated randomly using a set of predefined functions and
terminals [12]. All chromosomes are created along with
their level of fitness. Every chromosome then undergoes to
one of the reproducing operators. In this paper, refolding
operator will be implemented for the production process.

Figure 2. MATLAB GF Algorithm Code

The chromosomes in the population are then made to go

through a process of evolution. GF is based on the genetic
structure and the refolding operator. Genes from a good
individual propagate throughout refolding each chromosome
so that a good chromosome will sometimes produce
offspring that is better than the old chromosome. Thus, each
successive generation will carry the fittest refolded
chromosomes for all successive population. The basic
approach for implementing GF is by using one genetic
operator; refolding operator as discussed in GF literature
[12].

IV. GF TOOLBOX STRUCTURE

To our knowledge, this is the first study to deal with GF
algorithm using MATLAB code. The MATLAB Genetic
Folding Toolbox aims to make GF accessible to the scientist
and engineer for further improvements. This allows the user
also to make direct comparisons between GF methods and
other evolutionary algorithms specifically Genetic
Programming.

GF MATLAB Toolbox essentially supports structures
data type and complex of numeric elements. The main data
type in GF is a complex structure of integer values separated
by dots and stored as a string type. The GF Toolbox
produced phenotypes and genotype after finding the fitness
function values. The chromosome structure stores an entire
population in a single structure, where GF structure consists
of the left and right numbers of individuals along with GF
index which represents the type of the chromosome
operator. Phenotypes are stored in a structured of Helix-
Language [12] scheme. Finally, the fitness values are stored
in a cell inside the GF chromosome structure. The GF
toolbox uses GPLab [13] for the evaluation, graphics and
selection methods in order not reinventing the wheel.

A. Chromosome Architecture
Each GF chromosome composed of a number of

predefined genes. Each gene consists of a linear number of
units that are allocated/reallocated to represent various
number of computer programs. Another significant aspect of
GF chromosome is being able to work on two types of
spaces alternatively, a computation space (genotype) and a
solution space (phenotype).

Typically, the floating-numbers inside GF chromosomes
are used to represent solutions, where genes hold a float
number are functions (antif, antprogn2 and antprogn3) and
genes hold values less than zero are terminal (antright, antleft
and antmove). Assume the following is GF chromosome to
represent a computer program of

antprogn3(antprogn2(antmove,antleft),antright,antmove):

1 2 3 4 5 6

Antprogn3 Antprogn2 Antmove antleft Antright Antmove
2.6.5 4.3 3 4 5 6

B. Fitness Values
Fitness values computed by an objective function shown

in (1) specific to the Santa Fe Trail problem. This case study
confirms the importance of GF algorithm in solving Santa Fe
Trail problem in a comparison with Genetic Programming
[8]. The Santa Fe Trail problem however, has 32×32 fields
with 89 pieces of foods that are located on the discrete trail.
As the generations pass, the members of the population
should get fitter and fitter. The raw fitness value is calculated
according to the following function:

Fitness_value = 89 – pieces_eaten (1)

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 55

function[fresult]= GFEncoding(GFChr,arity)

sGF = size(GFChr,2); % size of GF
j=1; % start at index 1
GFTemp = GFChr; % A temp copy of GFChr
% Creating the LC and RC of each gene
while sGF > 1
 for a=1:arity % no of arity of each gene
 randIndex= intrand(1,sGF);
 GFendoded{j,a}=GFChr(randIndex);
 GFChr(randIndex) = [];%Remove the selected
 %item
 End % End for-loop
 fresult{1,j} = strcat(
 num2str(GFendoded{j,1}),'.',
 num2str(GFendoded{j,2}),'.',
 num2str(GFendoded{j,3})
); %A Decoded of a 3-arity GF chromosome
 GFTemp{1}=[];%Remove an item from the GFTemp
 GFTemp=GFTemp(~cellfun('isempty',GFTemp));
 sGF = size(GFTemp,2);
 j = j+1;
end % End while-loop

function[GF,fresult]= Refolding(GFChr)

sGF = size(GFChr,2);
GFChr=randperm(sGF);%Random indices
arity = 3; %maximum number of arities
%Reallocating LC and RC of each gene
[GF,fresult]= GFEncoding(GFChr,arity);

function[tree, thisDepth, GFLevel,
noGFnodes] = GFDecoding(GFChr, nextNode,
thisDepth, noGFnodes, GFLevel)
tree.op = GFparent{newNode};% the operator
thisDepth = thisDepth + 1; % Tree Depth
noGFnodes= noGFnodes +1; % no of nodes
tree.nodeid=noGFnodes; %the ID value of a
node
tree.maxid=tree.nodeid;%nodeid value=the
maxid
GFLevel = GFLevel + 1; % no of folded times

for i=1:arity % no of arity
 nextNode=depthGF(newNode,i);%next node
func
 [t, thisDepth, GFLevel, noGFnodes] =
GFDecoding(GFChr, nextNode, thisDepth,
noGFnodes, GFLevel);
 tree.kids{i}=t;
end% End for loop
tree.nodes=(tree.maxid+1)-tree.nodeid;
%update % the number of tree’s nodes
tree.maxid = tree.kids{i}.maxid;

where pieces_eaten is the number of eaten foods by an ant
from the overall pieces of 89 and the best Fitness_value is to
reach a cost equals to zero.

C. Encoding/Genotype process
In GF algorithm, an encoding function is use to represent

mapping of the object variables to a string code based on the
parity number of each gene. The encodings in Strings of the
GF chromosomes are chosen according to the following
facts:
1. Allows genetic operators to propagate building blocks

from parents’ genotype to offspring genotype.
2. Allows a tractable mapping to the phenotype by storing

the number of folded RC, LC and IC in each gene of a
chromosome.

3. Represents the fundamental building blocks that are
important for the problem type in hand.

Figure 3. MATLAB Encoding Code of GF Chromosome

D. Decoding/Phenotype process
To decode a chromosome, Figure 4 uses number of parity

to initialize GF tree structures from the encoded GF
chromosome which will be as a result implemented to the
GPLab [13] toolbox. The mapping of string code to its tree
structure is achieved through decoding function as shown in
Figure 4. This MATLAB code converts all functions and
terminals symbols to the proper GF tree structure. A GF tree
Structure is computed due to two facts; one is to be
implemented into the GPLab toolbox and secondly; due to
the comparative purposes.

Figure 4. A MATLAB Encoding Code of GF Chromosome

E. Refolding Operators
During refolding operator [12] calling to reallocate a

chromosome’s cells, a lot of various kind of computer
programs produced. In general, GF tries every time to fold
each gene with its complementary gene within same
chromosome. This operator leads to the evolution of
populations of H-Language that are better suited to their
environment than the H-Language from which they were
created, just as in natural RNA folding. In Figure 5 a
MATLAB code is shown to demonstrate simplicity of
refolding operator, which are randomly generated using a
randperm function. The function will always generate
computer programs free of pathologies. i.e. all functioned
generated by the operator have the right number of parities of
both terminal and nonterminal functions. In this case no
attention was paid on the function except saving the final
result of code generated by the GFEncoding(). Based on its
results, new fitness values were computed for each refolded
chromosome.

Figure 5. Refolding Code of GF Chromosome

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 56

V. IMPLEMENTATION AND ANALYSIS
Comparisons with GP in various types of problems

confirm that GF algorithm is a promising area of research for
optimization programming. On the artificial ant problem
(Table I), the GF algorithm using a refolding operator was an
effective way to improve the looking for extreme of
functions in a search space. The fittest chromosomes using
GF algorithm were recovered at early generations in a
comparison with GP as shown in the last column of Table I.
In fact, GF found optimum chromosomes with a longest path
of calling (depth) and number of folding processes (nodes).
To aloow for more results in a comparison with GP, we
integrated GF MATLAB code into GPLab [13] toolbox to
obtain on results shown in Appendix A

TABLE I. LIST OF ALL APPLICATIONS TESTED ON GF ALGORITHM

EA
Type

Population Generation Fitness Depth Nodes Fittest

GF 20 10 33/89 8 23 5
GP 20 10 24/89 3 6 2
GF 50 20 40/89 7 25 5
GP 50 20 33/89 6 12 18
GF 200 100 58/89 5 16 61
GP 200 100 77/89 6 18 96

The overall papers were conducted using GF algorithm

are summarized in Table II. The results thus obtained were
comparable with other evolutionary algorithms. Refolding
operator rotates genes for a chromosome to create a new
offspring. The simplest way to do this was to permutate
randomly all genes’ compartments before the parent
chromosome transferred to the second child.

TABLE II. LIST OF ALL APPLICATIONS TESTED ON GF ALGORITHM

Range of Applications
Evolutionary Algorithms

GEP DAG GF KGP KGEP

Multi-Classification
Dataset [6] [6] [4,6] [6] [6]

 GA GP GF - -

Binary Classification
Dataset [2,5] [2,5] [2,5] - -

Regression Dataset [3] [3] - -

Santa Fe Trail Problem [12] - -

Analogue Circuit
Design - [7] [7] - -

VI. CONCLUSION AND FUTURE WORK
The purpose of the paper is to introduce a MATLAB

toolbox of Genetic Folding Algorithm. As GF being a
member of evolutionary algorithms, GF is applicable for
general optimization techniques or any specific NP-
problems. GF algorithm is able to handle any problem based
on the number of folding the problem might be embodied
with. This means, the number of folding is a repeatable
process based upon the type of operators and the number of
parities the computer programs takes to be represented. The
GF MATLAB toolbox shown here is meant to assist
researchers making new comparisons with GF algorithms
with any other members of evolutionary algorithms’ family.
Finally, some of GF comparisons were made with wide
range of algorithms and problems using the introduced
MATLAB simple code.

REFERENCES

[1] J. Koza, Genetic Programming: on the programming of computers by
means of natural selection, MIT press, pp. 66–551, 1992.

[2] M. Mezher, M Abbod, Genetic Folding: A New Class of
Evolutionary Algorithm. AI-2010 Thirtieth SGAI International
Conference on Artificial Intelligence Cambridge, England 14-16 2010

[3] M. Mezher, M Abbod, Genetic Folding: A New Genetic Folding
Algorithm for Regression Problems. UKSim.2012, Cambridge, UK.
2012

[4] M. Mezher, M Abbod, Genetic Folding: Analyzing the Mercer’s
Kernels Effect in Support Vector Machine Using Genetic Folding

[5] M. Mezher, M Abbod, Genetic Folding: A New Class of
Evolutionary Algorithms for Binary SVM Problem.

[6] M. Mezher, M Abbod , “Genetic Folding for Solving Multiclass SVM
Problems” Elsevier Editorial System for Applied Soft Computing

[7] O. Ushie, M. Abbod, B. Usibe, Genetic Folding/Programming
Toolbox: Analogue Circuit Design Case Study. Journal of
Automation and Systems Engineering, PP. 40-64, 2016

[8] J. Koza, F. Bennet, D. Andre, M. Keane, Genetic Programming III
Morgan Kaufnamm Pub. ISBN 1-55860-543-6, 1999

[9] J. Tavares, F. Pereira, Evolving strategies for updating pheromone
trails: A case study with the tsp. In: PPSN XI Proceedings. Volume
6239 of Lecture Notes in Computer Science., Springer (2010) 523–
532

[10] J. Tavares, F. Pereira, Designing pheromone update strategies with
strongly typed genetic programming. In: EuroGP 2011 Proceedings.
Lecture Notes in Computer Science, Springer (2011)

[11] T. White, B. Pagurek, F. Oppacher: ASGA: Improving the ant system
by integration with genetic algorithms. In: Proceedings of the 3rd
Genetic Programming Conference, Morgan Kaufmann (1998) 610–
617

[12] M. Mezher, M Abbod, Novel Genetic Operator for Genetic Folding
Algorithm: A Refolding Operator and A New Genotype, submitted at
International Journal of Intelligence Science. November 2016

[13] S. Silva and J. Almeida, GPLAB-a genetic programming toolbox
for MATLAB, in Proceedings of the Nordic MATLAB conference,
2003, pp. 273–278

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 57

Appendix A

GF

GP

Figure 6. GF vs. GP at population size 20 and generations 10

GF

0 2 4 6 8 10

generation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

lo
g1

0(
fit

ne
ss

)

Fitness

maximum: 33

median: 1

average: 3.95

avg - std: -3.7378

avg + std: 11.6378
best so far: 33

0 2 4 6 8 10

generation

0

20

40

60

80

100

tre
e

de
pt

h*
10

 /
tre

e
si

ze
 /

%
in

tro
ns

Structural complexity

maximum depth: 8

bestsofar depth: 8
bestsofar size: 23

bestsofar introns: 12

0 2 4 6 8 10

generation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lo
g1

0(
fit

ne
ss

)

Fitness

maximum: 24

median: 11

average: 10.85

avg - std: 4.1593

avg + std: 17.5407
best so far: 24

0 2 4 6 8 10

generation

0

10

20

30

40

50

60

tre
e

de
pt

h*
10

 /
tre

e
si

ze
 /

%
in

tro
ns

Structural complexity

maximum depth: 6

bestsofar depth: 3
bestsofar size: 6

bestsofar introns: 0

0 5 10 15 20

generation

-0.5

0

0.5

1

1.5

2

lo
g1

0(
fit

ne
ss

)

Fitness

maximum: 40

median: 0

average: 1.56

avg - std: -4.4337

avg + std: 7.5537
best so far: 40

0 5 10 15 20

generation

0

10

20

30

40

50

60

70

80

tre
e

de
pt

h*
10

 /
tre

e
si

ze
 /

%
in

tro
ns

Structural complexity

maximum depth: 8

bestsofar depth: 7
bestsofar size: 25

bestsofar introns: 8

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 58

GP

Figure 7. GFGF vs. GP at population size 50 and generations 20

GF

GP

Figure 8. GF vs. GP at population size 200 and generations 100

0 5 10 15 20

generation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
lo

g1
0(

fit
ne

ss
)

Fitness

maximum: 33

median: 1

average: 3.1

avg - std: -3.466

avg + std: 9.666
best so far: 33

0 5 10 15 20

generation

0

10

20

30

40

50

60

tre
e

de
pt

h*
10

 /
tre

e
si

ze
 /

%
in

tro
ns

Structural complexity

maximum depth: 6

bestsofar depth: 6
bestsofar size: 12

bestsofar introns: 0

0 20 40 60 80 100

generation

-0.5

0

0.5

1

1.5

2

lo
g1

0(
fit

ne
ss

)

Fitness

maximum: 58

median: 0.5

average: 2.84

avg - std: -2.8835

avg + std: 8.5635
best so far: 58

0 20 40 60 80 100

generation

0

10

20

30

40

50

60

70

tre
e

de
pt

h*
10

 /
tre

e
si

ze
 /

%
in

tro
ns

Structural complexity

maximum depth: 7

bestsofar depth: 5
bestsofar size: 16

bestsofar introns: 13

0 20 40 60 80 100

generation

-0.5

0

0.5

1

1.5

2

lo
g1

0(
fit

ne
ss

)

Fitness

maximum: 66

median: 1

average: 2.875

avg - std: -3.1342

avg + std: 8.8842
best so far: 66

0 20 40 60 80 100

generation

0

10

20

30

40

50

60

tre
e

de
pt

h*
10

 /
tre

e
si

ze
 /

%
in

tro
ns

Structural complexity

maximum depth: 6

bestsofar depth: 6
bestsofar size: 18

bestsofar introns: 4

INTERNATIONAL JOURNAL OF COMPUTERS Volume 11, 2017

ISSN: 1998-4308 59

	I. Introduction
	II. Ant Colony Optimisation
	III. Genetic Folding Algorithm
	IV. GF Toolbox Structure
	A. Chromosome Architecture
	B. Fitness Values
	C. Encoding/Genotype process
	D. Decoding/Phenotype process
	E. Refolding Operators

	V. Implementation and Analysis
	VI. Conclusion and Future Work
	References

