
ACO Algorithm:   
Initialize the pheromone trails and parameters;     

while(not_termination) 
      for each ant complete a tour 
          LocalPhermoneUpdate(); 
      End for 
      Update_Best(); 
      GlobalPheromoneUpdate(); 
    end while 

end procedure 
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Abstract— This paper is a primarily attempt to design a toolbox 
for Genetic Folding algorithm using MATLAB.  The toolbox was 
designed for training ACO in solving Santa Fe Trail problem. 
However, GF algorithm can encode and decode any type of 
problem into a linearly folding scheme. For advance or even 
simple type of problems, a string scheme is encoding to represent a 
set of operators. GF is a novel algorithm in solving optimization 
problems as shown in the experiments. We will also illustrate the 
benefits of GF algorithm conducted into ACO in order finding the 
best feeding function in comparison with the literature. 
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I.  INTRODUCTION  
Genetic folding algorithm (GF) is an evolutionary 

computation algorithm to find computer programs that can 
perform a task [1]. Programs (chromosomes) generated by 
GF are usually represented by floating numbers separated 
by dots. Each cell in a chromosome holds floating numbers 
represent a function call and a cell holds less than one is a 
value to be plugged in functions.  

GF has been shown to be an effective strategy in 
problems of classifications, regressions and recently in ant 
colony optimization problems. For example, classification 
[2] and regression [3] have demonstrated how genetic 
optimization methods can be used to derive superior results. 
The [4] have presented GF using Ant Colony Optimization 
to solve Santa Fe Trail problem, whilst others have 
demonstrated how a combination of GF and GP 
implemented in analogue circuit design [7]. 

Unlike older AI systems, GF is better than conventional 
AI in that it is more genetic generation diversity [4] and 
simple to implement as shown here. Furthermore, GF has 
shown significant benefits over typical optimization 
techniques in searching a large, multi-class, or n-dimensional 
dataset.  
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The structure of this paper, section II introduces the Santa 
Fe Trail problem. In Section III we discuss the overview of 
GF algorithm. We then explain and provide examples of 
MATLAB code of our new GF schema. We then summarize 
experiments results of the previous literature in Section IV. 
Section V states the conclusion and future directions. 

 

II. ANT COLONY OPTIMISATION  
Ant Colony Optimization (ACO) is a technique for 

optimization that was initially introduced in the early of 
1990’s and it is one of the most successful techniques of the 
field of swam intelligence. The general idea is relatively 
simple and based on a set of ants, each making one of 
possible round-paths looking for grain [8]. Figure 1 shows 
the ACO algorithm pseudo code. 

Artificial ant problem however, has been solved using 
GA [11], GP [10] to different problems such as travelling 
salesmen problem [9]. The general pseudo code of the ACO 
algorithm has been shown in Figure 1. 
 

Figure 1.  An ACO Algorithm Pseudo-Code 

III. GENETIC FOLDING ALGORITHM  
 

Genetic Folding algorithm has been inspired by 
RNA/DNA folding mechanism as in [2]. GF algorithm is a 
proofed to be a comparable algorithm in predicting 
mathematical equations such as kernel function [4] for either 
classification [5,6] and regression [3] problems. GF 
simulates the survival of the fittest individuals among all the 
individuals in the population over successive generations for 
solving a problem. Each generation consists of a population 
of linear floating numbers that represents a program. GF 
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MAXGEN = 50; % No. of generations 
Oplist = 
{'antprogn3','antprogn2','antif','antmove','a
ntright','antleft'};% set of operators 
Oparity ={3,2,2,0,0,0};% arity of each 
operator 
% Initialise population 
Chrom = GFEncoding(Oplist, Oparity);  
Chrom= GFOperator(‘GFDecoding’, Chrom); 
%Create GF trees to evaluate it by GPLAB 
GFPOP = fun(antEval(Chrom)); % Evaluate GF 
Chromosomes 
Gen = 0; % Counter 
% Start GF generational loop 
while Gen < MAXGEN 
% Visualization using GPLab toolbox 
plotgraphics 
%Encode a GF chromosome using the defined set 
Chrom = GFEncoding(Oplist, Oparity); 
% Add chromosome into population 
[GFPOP]=Combine (Chrom, GFSelected); 
% use a sus selection method 
GFSelected = selectMethod('sus',GFPOP); 
% Refold individuals (GF Genetic Operator) 
GFSelected = GFOperator('Refolding', 
GFSelected); 
% Create A GF Tree to be evaluated in GPLab 
GFSelected = GFOperator(‘GFDecoding’, 
GFSelected); 
% Evaluate offspring using antEval function 
GFSelected = fun(antEval(GFSelected)); 
% Add offspring into population 
[GFPOP]=Combine (Chrom, GFSelected); 
% Increment counter 
Gen = Gen+1; 
end 
 

algorithm has a flexible representation of GF program; 
Prefix, Suffix and Infix formats [2]. 

A simple MATLAB GF algorithm code is shown in 
Figure 2. GF firstly operates on an initial population of 
potential solutions producing the successively fittest 
solution. At each generation, the solutions (chromosomes) 
generated randomly using a set of predefined functions and 
terminals [12]. All chromosomes are created along with 
their level of fitness. Every chromosome then undergoes to 
one of the reproducing operators. In this paper, refolding 
operator will be implemented for the production process.  

Figure 2.  MATLAB GF Algorithm Code 

 
The chromosomes in the population are then made to go 

through a process of evolution. GF is based on the genetic 
structure and the refolding operator. Genes from a good 
individual propagate throughout refolding each chromosome 
so that a good chromosome will sometimes produce 
offspring that is better than the old chromosome. Thus, each 
successive generation will carry the fittest refolded 
chromosomes for all successive population. The basic 
approach for implementing GF is by using one genetic 
operator; refolding operator as discussed in GF literature 
[12]. 

IV. GF TOOLBOX STRUCTURE  
 

To our knowledge, this is the first study to deal with GF 
algorithm using MATLAB code. The MATLAB Genetic 
Folding Toolbox aims to make GF accessible to the scientist 
and engineer for further improvements. This allows the user 
also to make direct comparisons between GF methods and 
other evolutionary algorithms specifically Genetic 
Programming. 

GF MATLAB Toolbox essentially supports structures 
data type and complex of numeric elements. The main data 
type in GF is a complex structure of integer values separated 
by dots and stored as a string type. The GF Toolbox 
produced phenotypes and genotype after finding the fitness 
function values. The chromosome structure stores an entire 
population in a single structure, where GF structure consists 
of the left and right numbers of individuals along with GF 
index which represents the type of the chromosome 
operator. Phenotypes are stored in a structured of Helix-
Language [12] scheme. Finally, the fitness values are stored 
in a cell inside the GF chromosome structure. The GF 
toolbox uses GPLab [13] for the evaluation, graphics and 
selection methods in order not reinventing the wheel.  

A. Chromosome Architecture 
Each GF chromosome composed of a number of 

predefined genes. Each gene consists of a linear number of 
units that are allocated/reallocated to represent various 
number of computer programs. Another significant aspect of 
GF chromosome is being able to work on two types of 
spaces alternatively, a computation space (genotype) and a 
solution space (phenotype). 

Typically, the floating-numbers inside GF chromosomes 
are used to represent solutions, where genes hold a float 
number are functions (antif, antprogn2 and antprogn3) and 
genes hold values less than zero are terminal (antright, antleft 
and antmove). Assume the following is GF chromosome to 
represent a computer program of 

 
antprogn3(antprogn2(antmove,antleft),antright,antmove): 

 
1 2 3 4 5 6 

Antprogn3 Antprogn2 Antmove antleft Antright Antmove 
2.6.5 4.3 3 4 5 6 

B. Fitness Values 
Fitness values computed by an objective function shown 

in (1) specific to the Santa Fe Trail problem. This case study 
confirms the importance of GF algorithm in solving Santa Fe 
Trail problem in a comparison with Genetic Programming 
[8]. The Santa Fe Trail problem however, has 32×32 fields 
with 89 pieces of foods that are located on the discrete trail. 
As the generations pass, the members of the population 
should get fitter and fitter. The raw fitness value is calculated 
according to the following function: 

 
Fitness_value = 89 – pieces_eaten                            (1) 
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function[fresult]= GFEncoding(GFChr,arity) 
 
sGF = size(GFChr,2); % size of GF 
j=1; % start at index 1 
GFTemp = GFChr; % A temp copy of GFChr 
% Creating the LC and RC of each gene  
while sGF > 1  
  for a=1:arity % no of arity of each gene 
    randIndex= intrand(1,sGF);     
    GFendoded{j,a}=GFChr(randIndex); 
    GFChr(randIndex) = [];%Remove the selected             
                          %item   
  End % End for-loop 
  fresult{1,j} = strcat( 
       num2str(GFendoded{j,1}),'.', 
       num2str(GFendoded{j,2}),'.',       
       num2str(GFendoded{j,3}) 
      ); %A Decoded of a 3-arity GF chromosome 
  GFTemp{1}=[];%Remove an item from the GFTemp 
  GFTemp=GFTemp(~cellfun('isempty',GFTemp));  
  sGF = size(GFTemp,2); 
  j = j+1; 
end % End while-loop 

function[GF,fresult]= Refolding(GFChr) 
 
sGF = size(GFChr,2); 
GFChr=randperm(sGF);%Random indices  
arity = 3; %maximum number of arities  
%Reallocating LC and RC of each gene 
[GF,fresult]= GFEncoding(GFChr,arity); 
 

function[tree, thisDepth, GFLevel, 
noGFnodes] = GFDecoding(GFChr, nextNode, 
thisDepth, noGFnodes, GFLevel) 
tree.op = GFparent{newNode};% the operator 
thisDepth = thisDepth + 1; % Tree Depth 
noGFnodes= noGFnodes +1; % no of nodes 
tree.nodeid=noGFnodes; %the ID value of a 
node 
tree.maxid=tree.nodeid;%nodeid value=the 
maxid 
GFLevel = GFLevel + 1; % no of folded times 
 
for i=1:arity % no of arity 
   nextNode=depthGF(newNode,i);%next node 
func 
   [t, thisDepth, GFLevel, noGFnodes] = 
GFDecoding(GFChr, nextNode, thisDepth, 
noGFnodes, GFLevel); 
   tree.kids{i}=t; 
end% End for loop 
tree.nodes=(tree.maxid+1)-tree.nodeid; 
%update % the number of tree’s nodes 
tree.maxid = tree.kids{i}.maxid; 
 

 
where pieces_eaten is the number of eaten foods by an ant 
from the overall pieces of 89 and the best Fitness_value is to 
reach a cost equals to zero.  

C. Encoding/Genotype process 
In GF algorithm, an encoding function is use to represent 

mapping of the object variables to a string code based on the 
parity number of each gene. The encodings in Strings of the 
GF chromosomes are chosen according to the following 
facts: 
1. Allows genetic operators to propagate building blocks 

from parents’ genotype to offspring genotype.   
2. Allows a tractable mapping to the phenotype by storing 

the number of folded RC, LC and IC in each gene of a 
chromosome. 

3. Represents the fundamental building blocks that are 
important for the problem type in hand. 

 

Figure 3.  MATLAB Encoding Code of GF Chromosome 

 

D. Decoding/Phenotype process 
To decode a chromosome, Figure 4 uses number of parity 

to initialize GF tree structures from the encoded GF 
chromosome which will be as a result implemented to the 
GPLab [13] toolbox. The mapping of string code to its tree 
structure is achieved through decoding function as shown in 
Figure 4. This MATLAB code converts all functions and 
terminals symbols to the proper GF tree structure. A GF tree 
Structure is computed due to two facts; one is to be 
implemented into the GPLab toolbox and secondly; due to 
the comparative purposes.  

 
 

 

 
Figure 4.  A MATLAB Encoding Code of GF Chromosome 

E. Refolding Operators 
During refolding operator [12] calling to reallocate a 

chromosome’s cells, a lot of various kind of computer 
programs produced. In general, GF tries every time to fold 
each gene with its complementary gene within same 
chromosome. This operator leads to the evolution of 
populations of H-Language that are better suited to their 
environment than the H-Language from which they were 
created, just as in natural RNA folding. In Figure 5 a 
MATLAB code is shown to demonstrate simplicity of 
refolding operator, which are randomly generated using a 
randperm function. The function will always generate 
computer programs free of pathologies. i.e. all functioned 
generated by the operator have the right number of parities of 
both terminal and nonterminal functions. In this case no 
attention was paid on the function except saving the final 
result of code generated by the GFEncoding(). Based on its 
results, new fitness values were computed for each refolded 
chromosome. 
 

Figure 5.  Refolding Code of GF Chromosome  
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V. IMPLEMENTATION AND ANALYSIS 
Comparisons with GP in various types of problems 

confirm that GF algorithm is a promising area of research for 
optimization programming. On the artificial ant problem 
(Table I), the GF algorithm using a refolding operator was an 
effective way to improve the looking for extreme of 
functions in a search space. The fittest chromosomes using 
GF algorithm were recovered at early generations in a 
comparison with GP as shown in the last column of Table I. 
In fact, GF found optimum chromosomes with a longest path 
of calling (depth) and number of folding processes (nodes). 
To aloow for more results in a comparison with GP, we 
integrated GF MATLAB code into GPLab [13] toolbox to 
obtain on results shown in Appendix A  

 

TABLE I.  LIST OF ALL APPLICATIONS TESTED ON GF ALGORITHM 

EA 
Type 

Population Generation Fitness  Depth Nodes Fittest  

GF 20 10 33/89 8 23 5 
GP 20 10 24/89 3 6 2 
GF 50 20 40/89 7 25 5 
GP 50 20 33/89 6 12 18 
GF 200 100 58/89 5 16 61 
GP 200 100 77/89 6 18 96 

 
The overall papers were conducted using GF algorithm 

are summarized in Table II. The results thus obtained were 
comparable with other evolutionary algorithms. Refolding 
operator rotates genes for a chromosome to create a new 
offspring. The simplest way to do this was to permutate 
randomly all genes’ compartments before the parent 
chromosome transferred to the second child. 

 

TABLE II.  LIST OF ALL APPLICATIONS TESTED ON GF ALGORITHM 

Range of Applications 
Evolutionary Algorithms 

GEP DAG GF KGP KGEP 

Multi-Classification 
Dataset [6] [6] [4,6] [6] [6] 

 GA GP GF - - 

Binary Classification 
Dataset [2,5] [2,5] [2,5] - - 

Regression Dataset  [3] [3] - - 

Santa Fe Trail Problem   [12] - - 

Analogue Circuit 
Design - [7] [7] - - 

 
 

 
 
 
 
 
 

VI. CONCLUSION AND FUTURE WORK 
The purpose of the paper is to introduce a MATLAB 

toolbox of Genetic Folding Algorithm. As GF being a 
member of evolutionary algorithms, GF is applicable for 
general optimization techniques or any specific NP-
problems. GF algorithm is able to handle any problem based 
on the number of folding the problem might be embodied 
with. This means, the number of folding is a repeatable 
process based upon the type of operators and the number of 
parities the computer programs takes to be represented. The 
GF MATLAB toolbox shown here is meant to assist 
researchers making new comparisons with GF algorithms 
with any other members of evolutionary algorithms’ family. 
Finally, some of GF comparisons were made with wide 
range of algorithms and problems using the introduced 
MATLAB simple code. 
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Figure 6.  GF vs. GP at population size 20 and generations 10 
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GP 

  

Figure 7.  GFGF vs. GP at population size 50 and generations 20 
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Figure 8.  GF vs. GP at population size 200 and generations 100 
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